
Page 10 FoxRockX March 2014

Handling hierarchical data
SQL Server offers two different tools that make working with hierarchies like organization
charts and bills of materials much easier than in VFP.

Tamar E. Granor, Ph.D.

In my last article, I showed how SQL Server makes
combining data into a single field much easier than
in VFP. This time, I’ll show how handling hierar-
chical data that doesn’t fit the standard parent-
child-grandchild model is easier in SQL Server.
Relational databases handle typical hierarchical
 relationships very well. When you have something
like customers, who place orders, which contain
line items, representing products sold, any rela-
tional database should do. You create one table for
each type of object and link them together with for-
eign keys.

Reporting on such data is easy, too. Fairly sim-
ple SQL queries let you collect the data you want
with a few joins and some filters.

But some types of data don’t lend themselves
to this sort of model. For example, the organiza-
tion chart for a company contains only people,
with some people managed by other people, who
might in turn be managed by other people. Clearly,
 records for all people should be contained in a sin-
gle table.

But how do you represent the manager rela-
tionship? One commonly used approach is to add a
field to the person’s record that points to the record
(in the same table) for his or her manager.

From a data-modeling point of view, this is a
simple solution. However, reporting on such data
can be complex. How do you trace the hierarchy
from a given employee through her manager to the
manager’s manager and so on up the chain of com-
mand? Given a manager, how do you find every-
one who ultimately reports to that person (that is,
reports to the person directly, or to someone man-
aged by that person, or to someone managed by
someone who is managed by that person, and so
on down the line)?

This article looks at two approaches to dealing
with this kind of data, and show how much easier it
is to get what you want in SQL Server than in VFP.

The traditional solution
As described above, the traditional way to handle
this type of hierarchy is to add a field to identify
a record’s parent (such as an employee’s man-
ager). For example, the Northwind database that
comes with VFP has a field in the Employees table

called ReportsTo. It contains the primary key of the
 employee’s manager; since that’s also a record in
Employees, the table is self-referential.

The AdventureWorks 2008 sample database for
SQL Server doesn’t have this kind of relationship
because it uses the second approach to hierarchies,
discussed later in this article. However, the 2005
version of the database has a set-up quite similar
to the one in Northwind. The Employee table has a
ManagerID field that contains the primary key (in
Employee) of the employee’s manager. (You can
download the 2005 version of AdventureWorks
from http://tinyurl.com/y943xr9 and the 2008
version from http://tinyurl.com/cp2fv8w.)

Using the VFP Northwind and SQL Server
AdventureWorks 2005 databases, let’s try to answer
some standard questions about an organization
chart.

Who manages an employee?
In both cases, determining the manager of an individ-
ual employee is quite simple. It just requires a self-join
of the Employee table. That is, you use two instances
of the Employee table, one to get the employee and
one to get the manager. Listing 1 (EmpPlusMgr.PRG
in this month’s downloads) shows the VFP version of
the query that retrieves this data for a single employee
(by specifying the employee’s primary key-4, in this
case).

Listing 1. Use a self-join to connect an employee with his or
her manager.
SELECT Emp.FirstName AS EmpFirst, ;
 Emp.LastName AS EmpLast, ;
 Mgr.FirstName AS MgrFirst, ;
 Mgr.LastName AS MgrLast ;
 FROM Employees Emp ;
 JOIN Employees Mgr ;
 ON Emp.ReportsTo = Mgr.EmployeeID ;
 WHERE Emp.EmployeeID = 4 ;
 INTO CURSOR csrEmpAndMgr

The AdventureWorks version of the same task
is a little more complex, because the database has
a separate table for people (called Contact). The
 Employee table uses a foreign key to Contact to
identify the individual; Employee contains only
the data related to employment. So extracting an
 employee’s name requires joining Employee to
Contact.

March 2014 FoxRockX Page 11

The solution still uses a self-join on the Em-
ployee table, but now it also requires two instances
of the Contact table. Listing 2 (EmpPlusMgr.SQL
in this month’s downloads) shows the SQL Server
query to retrieve the employee’s name and his or
her manager’s name. Again, we retrieve data for a
single employee (by specifying EmployeeID=37).

 Listing 2. The SQL Server version of the query is a little more
complex, due to additional normalization, but still uses a self-
join.
SELECT EmpContact.FirstName AS EmpFirst,
 EmpContact.LastName AS EmpLast,
 MgrContact.FirstName AS MgrFirst,
 MgrContact.LastName AS MgrLast
 FROM Person.Contact EmpContact
 JOIN HumanResources.Employee Emp
 ON Emp.ContactID = EmpContact.ContactID
 JOIN HumanResources.Employee Mgr
 ON Emp.ManagerID = Mgr.EmployeeID
 JOIN Person.Contact MgrContact
 ON Mgr.ContactID = MgrContact.ContactID
 WHERE Emp.EmployeeID = 37

It’s easy to extend these queries to retrieve the
names of all employees with each one’s manager.
Just remove the WHERE clause from each query.

What’s the management hierarchy for
an employee?
Things start to get a lot more interesting when you
want to trace the whole management hierarchy for
an employee. That is, given a particular employee,
retrieve the name of her manager and of the man-
ager’s manager and of the manager’s manager’s
manager and so on up the line until you reach the
person in charge.

Since you don’t know how many levels you
might have, rather than putting all the data into
a single record, here we create a cursor with one
 record for each level. The specifi ed employee comes
fi rst, and then you climb the hierarchy so that the
big boss is last.

VFP’s SQL alone doesn’t offer a solution for
this problem. Instead, you need to combine a little
bit of SQL with some Xbase code, as in Listing 3.
(This program is included in this month’s down-
loads as EmpHierarchy.PRG.)

 Listing 3. To track a hierarchy to the top in VFP calls for a mix
of SQL and Xbase code.
* Start with a single employee and create a
* hierarchy up to the top dog.
LPARAMETERS iEmpID

LOCAL iCurrentID , iLevel

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR EmpHierarchy ;
 (cFirst C(15), cLast C(20) , iLevel I)

USE Employees IN 0 ORDER EmployeeID

iCurrentID = iEmpID
iLevel = 1

DO WHILE NOT EMPTY(iCurrentID)

 SEEK iCurrentID IN Employees

 INSERT INTO EmpHierarchy ;
 VALUES (Employees.FirstName, ;
 Employees.LastName, ;
 m.iLevel)

 iCurrentID = Employees.ReportsTo
 iLevel = m.iLevel + 1
ENDDO

USE IN Employees
SELECT EmpHierarchy

The strategy is to start with the employee you’re
interested in, insert her data into the result cursor,
then grab the PK for her manager and repeat until
you reach an employee whose PK is empty. Figure
1 shows the results when you pass 7 as the param-
eter.

SQL Server provides a simpler solution, by
 using a Computed Table Expression (CTE). A CTE
is a query that precedes the main query and pro-
vides a result that is then used in the main query.
While similar to a derived table, CTEs have a cou-
ple of advantages.

First, the result can be included multiple times
in the main query (with different aliases). A derived
table is created in the FROM clause; if you need the
same result again, you have to include the whole
defi nition for the derived table again.

Second, and relevant to this problem, a CTE
can have a recursive defi nition, referencing itself.
That allows it to walk a hierarhcy.

Listing 4 shows the structure of a query that
uses a CTE. (It’s worth noting that a single query
can have multiple CTEs; just separate them with
commas.)

L isting 4. The defi nition for a CTE precedes the query that
uses it.
WITH CTEAlias(Field1, Field2, ...)
AS
(
 SELECT <fi eldlist>
 FROM <tables>
 ...
)
SELECT <main fi eldlist>
 FROM <main query tables>
 ...

F igure 1. Running the query in Listing 3, passing 7 as the pa-
rameter, gives these results.

Page 12 FoxRockX March 2014

The query inside the parentheses is the CTE; its
alias is whatever you specify in the WITH line. The
WITH line also must contain a list of the fields in
the CTE, though you don’t indicate their types or
sizes.

The main query follows the parentheses and
presumably includes the CTE in its list of tables and
some of the CTE’s fields in the field list.

For a recursive CTE, you combine two queries
with UNION ALL. The first query is an "anchor"; it
provides the starting record or records. The second
query references the CTE itself to drill down recur-
sively.

A recursive CTE continues drilling down until
the recursive portion returns no records.

Listing 5 shows a query that produces the
management hierarchy for the employee whose
 EmployeeID is 37. (Just change the assignment to
@iEmpID to specify a different employee.) The
query is included in this month’s downloads as
 EmpHierarchyViaCTE.SQL.

Listing 5. To retrieve the management hierarchy for an
employee in the SQL Server AdventureWorks 2005 database,
use a Computed Table Expression.
DECLARE @iEmpID INT = 37;

WITH EmpHierarchy (
 FirstName, LastName, ManagerID, EmpLevel)
AS
(
SELECT Contact.FirstName, Contact.LastName,
 Employee.ManagerID, 1 AS EmpLevel
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID =
 Contact.ContactID
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Contact.FirstName, Contact.LastName,
 Employee.ManagerID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID =
 Contact.ContactID
 JOIN EmpHierarchy
 ON Employee.EmployeeID =
 EmpHierarchy.ManagerID
)

SELECT FirstName, LastName, EmpLevel
 FROM EmpHierarchy

The alias for the CTE here is EmpHierarchy. The
anchor portion of the CTE selects the specified per-
son (WHERE EmployeeID = @iEmpID), including
that person’s ManagerID in the result and setting
up a field to track the level in the database.

The recursive portion of the query joins the
 Employee table to the EmpHierarchy table-in-prog-
ress (that is, the CTE itself), matching the ManagerID
from EmpHierarchy to Employee. EmployeeID. It
also increments the EmpLevel field, so that the first
time it executes, EmpLevel is 2, and the second time,
it’s 3, and so forth.

Once the CTE is complete, the main query pulls
the desired information from it. Figure 2 shows the
result of the query in Listing 5.

Who does an employee manage?
The problem gets a little tougher, at least on the
VFP side, when you want to put together a list of
all employees a particular person manages at all
levels of the hierarchy. That is, not only those she
manages directly, but people who report to those
people, and so on down the line.

To make the results more meaningful, we want
to include the name of the employee’s direct man-
ager in the results.

What makes this difficult in VFP is that at
each level, you may (probably do) have multiple
employees. You need not only to add each to the
result, but to check who each of them manages.
That means you need some way of keeping track of
who you’ve checked and who you haven’t.

The solution uses two cursors. One (MgrHierarchy)
holds the results, while the other (EmpsToProcess)
holds the list of people to check. Listing 6 shows the
code; it’s called MgrHierarchy.PRG in this month’s
downloads.

Listing 6. Putting together the list of people a specified person
manages directly or indirectly is harder than climbing up the
hierarchy.
* Start with a single employee and determine
* all the people that employee manages,
* directly or indirectly.
LPARAMETERS iEmpID

LOCAL iCurrentID, iLevel, cFirst, cLast,
LOCAL nCurRecNo, cMgrFirst, cMgrLast

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR MgrHierarchy ;
 (cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15))
CREATE CURSOR EmpsToProcess ;
 (EmployeeID I, cFirst C(15), cLast C(20), ;
 iLevel I, cMgrFirst C(15), cMgrLast C(15))

INSERT INTO EmpsToProcess ;
 SELECT m.iEmpID, FirstName, LastName, 1, ;
 "", "" ;
 FROM Employees ;
 WHERE EmployeeID = m.iEmpID

SELECT EmpsToProcess

SCAN
 iCurrentID = EmpsToProcess.EmployeeID

Figure 2. The query in Listing 5 returns one record for each
level of the management hierarchy for the specified employee.

March 2014 FoxRockX Page 13

 iLevel = EmpsToProcess.iLevel
 cFirst = EmpsToProcess.cFirst
 cLast = EmpsToProcess.cLast
 cMgrFirst = EmpsToProcess.cMgrFirst
 cMgrLast = EmpsToProcess.cMgrLast

 * Insert this records into result
 INSERT INTO MgrHierarchy ;
 VALUES (m.cFirst, m.cLast, m.iLevel, ;
 m.cMgrFirst, m.cMgrLast)

 * Grab the current record pointer
 nCurRecNo = RECNO("EmpsToProcess")

 INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, ;
 m.iLevel + 1, m.cFirst, m.cLast ;
 FROM Employees ;
 WHERE ReportsTo = m.iCurrentID

 * Restore record pointer
 GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

To kick the process off, we add a single record to
EmpsToProcess, with information about the specifi ed
employee. Then, we loop through EmpsToProcess,
handling one employee at a time. We insert a record
into MgrHierarchy for that employee, and then we
add records to EmpsToProcess for everyone directly
managed by the employee we’re now processing.

The most interesting bit of this code is that
the SCAN loop has no problem with the cursor
we’re scanning growing as we go. We just have to
keep track of the record pointer, and after adding
records, move it back to the record we’re currently
processing.

Figure 3 shows the result cursor when you pass
2 as the employee ID.

In fact, you can do this with a single cursor that
represents both the results and the list of people yet
to check, but doing so makes the code a little con-
fusing.

In SQL Server, solving this problem is no hard-
er than solving the upward hierarchy. Again, you
use a CTE, and all that really changes is the join
condition in the recursive part of the CTE. (Because
we want the direct manager’s name, the fi eld list

is slightly different, as well). Listing 7 shows the
query (MgrHierarchyViaCTE.SQL in this month’s
downloads), along with a variable declaration to
indicate which employee we want to start with;
Figure 4 shows the results for this example.

Lis ting 7. Walking down the hierarchy of employees is no
harder in SQL Server than climbing up.
DECLARE @iEmpID INT = 3;

WITH EmpHierarchy
 (FirstName, LastName, EmployeeID, EmpLevel,
 MgrFirst, MgrLast)
AS
(
SELECT Contact.FirstName, Contact.LastName,
 Employee.EmployeeID, 1 AS EmpLevel,
 CAST('' AS NVARCHAR(50)) AS MgrFirst
 CAST('' AS NVARCHAR(50)) AS MgrLast
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID =
 Contact.ContactID
 WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Contact.FirstName, Contact.LastName,
 Employee.EmployeeID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel,
 EmpHierarchy.FirstName AS MgrFirst,
 EmpHierarchy.LastName AS MgrLast
 FROM Person.Contact
 JOIN HumanResources.Employee
 ON Employee.ContactID =
 Contact.ContactID
 JOIN EmpHierarchy
 ON Employee.ManagerID =
 EmpHierarchy.EmployeeID
)

SELECT FirstName, LastName, EmpLevel,
 MgrFirst, MgrLast
 FROM EmpHierarchy

Using the HierarchyID type
SQL Server 2008 introduced a new way to han-
dle this kind of hierarchy. A new data type called
 HierarchyID encodes the path to any node in a
 hierarchy into a single fi eld; a set of methods for the
data type make both maintainance and navigation
straightforward.

Fig ure 3. When you specify an EmployeeID of 2, you get all
the Northwind employees.

Figu re 4. These are the people managed by Roberto Tambu-
rello, whose EmployeeID is 3.

Page 14 FoxRockX March 2014

The SQL Server 2008 version of AdventureWorks
use the HierarchyID type to handle the management
hierachy (which is why we couldn’t use it for the
earlier examples). There are other changes, as well.
AdventureWorks 2008 is even more normalized than
the 2005 version; a new BusinessEntity table contains
information about people (including employees)
and businesses. So, instead of an EmployeeID, each
employee now has a BusinessEntityID. In addition,
the Contact table has been renamed Person.
However, there’s still a relationship between that
table and the Employee table that we can use to
retrieve an employee’s name.

HierarchyID essentially creates a string that
shows the path from the root (top) of the hierar-
chy to a particular record. The root node is indi-
cated as "/"; then, at each level, a number indicates
which child of the preceding node is in this node’s
hierarchy. So, for example, a hierachyID of "/4/3/"
means that the node is descended from the fourth
child of the root node, and is the third child of that
child. However, hierarchy IDs are actually stored
in a binary string created from the plain text ver-
sion.

The HierarchyID type has a set of methods
that allow you to easily navigate the hierarchy.
First, the ToString method converts the encoded
hierarchy ID to a string in the form shown above.
Listing 8 (ShowHierarchyID.SQL in this month’s
downloads) shows a query to extract the name
and hierarchy ID, both in encoded and plain text
form, of the AdventureWorks employees; Figure 5
shows a portion of the result.

Listing 8.The ToString method of the HierarchyID type
converts the hierarchy ID into a human-readable form.
SELECT Person.[BusinessEntityID]
 ,[OrganizationNode]
 ,[OrganizationNode].ToString()
 ,[OrganizationLevel]
 , FirstName
 , LastName
 FROM [HumanResources].[Employee]
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID

To move through the hierarchy, we use the
 GetAncestor method. As you’d expect, GetAncestor
returns an ancestor of the node you apply it to. You

pass a parameter to indicate how many levels up
the hierarchy you want to go, so GetAncestor(1)
 returns the parent of the node.

That’s actually all we need to retrieve the man-
agement hierarchy for a particular employee. As
in the earlier example, we use a CTE to handle the
recursive requirement. Listing 9 shows the query;
it’s included in this month’s downloads as EmpHi-
erarchyWithHierarchyID.SQL.

Listing 9. Retrieving the management hierarchy for a given
employee when using the HierarchyID data type isn’t much
different from doing it with a "reports to" field.
DECLARE @iEmpID INT = 40;

WITH EmpHierarchy
 (FirstName, LastName,
 OrganizationNode, EmpLevel)
AS
(
SELECT Person.FirstName, Person.LastName,
 Employee.OrganizationNode,
 1 AS EmpLevel
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
 Employee.OrganizationNode,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 JOIN EmpHierarchy
 ON Employee.OrganizationNode =
 EmpHierarchy.OrganizationNode.GetAncestor(1)
)

SELECT FirstName, LastName, EmpLevel
 FROM EmpHierarchy

The big difference between this query and the
earlier query is in the join between Employee and
EmpHierarchy. Rather than matching fields direct-
ly, we call GetAncestor to retrieve the hierarchy for
a node’s parent and compare that to the Employee
table’s OrganizationNode field.

As in the earlier examples, finding
 everyone an employee manages uses a
very similar query, but in the join condition
between Employee and EmpHierarchy, we
apply GetAncestor to the Employee field.
Listing 10 (MgrHierarchyWithHierarchyID.
SQL in this month’s downloads) shows the
code.

Listing 10. To find everyone an individual manages
using HierarchyID, just change the direction of the
join between Employee and EmpHierarchy.
DECLARE @iEmpID INT = 3;

WITH EmpHierarchy
 (FirstName, LastName, BusinessEntityID,
 EmpLevel, MgrFirst, MgrLast, OrgNode)
AS

Figure 5. The unnamed column here shows the text version of the Organization-
Node column.

March 2014 FoxRockX Page 15

(
SELECT Person.FirstName, Person.LastName,
 Employee.BusinessEntityID,
 1 AS EmpLevel,
 CAST('' AS NVARCHAR(50)) AS MgrFirst,
 CAST('' AS NVARCHAR(50)) AS MgrLast,
 OrganizationNode AS OrgNode
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
 Employee.BusinessEntityID,
 EmpHierarchy.EmpLevel + 1 AS EmpLevel,
 EmpHierarchy.FirstName AS MgrFirst,
 EmpHierarchy.LastName AS MgrLast,
 OrganizationNode AS OrgNode
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 JOIN EmpHierarchy
 ON Employee.OrganizationNode.GetAncestor(1) =
 EmpHierarchy.OrgNode
)

SELECT FirstName, LastName, EmpLevel,
 MgrFirst, MgrLast
 FROM EmpHierarchy

Setting up HierarchyIDs
Populating a HierarchyID field turns out to be sim-
ple. You can specify the plain text version and SQL
Server will handle encoding it. You can also use the
GetRoot and GetDescendant methods to populate
the field.

GetDescendant is particularly useful for in-
serting a child of an existing record. You call the
GetDescendant method of the parent record, pass-
ing parameters that indicate where the new record
goes among the children of the parent. A complete
explanation of the method is beyond the scope of
this article, but Listing 11 shows code that creates
a temporary table and adds a few records, and
then shows the results. This code is included in this
month’s downloads as CreateHierarchy.SQL.

Listing 11. You can specify the hierarchyID value directly or
use the GetRoot and GetDescendant methods.
CREATE TABLE #temp
 (orgHier HIERARCHYID, NodeName CHAR(20))

INSERT INTO #temp
 (orgHier, NodeName)
VALUES ('/', 'Root'))

DECLARE @Root HIERARCHYID,
 @curNode HIERARCHYID
SELECT @Root = hierarchyID::GetRoot()

INSERT INTO #temp
 (orgHier, NodeName)
VALUES (@Root.GetDescendant(NULL, NULL),
 'First child')

SELECT @curNode = MAX(orgHier)
 FROM #temp
 WHERE orgHier.GetAncestor(1) = @Root

INSERT INTO #temp
 (orgHier, NodeName)
VALUES (@curNode.GetDescendant(NULL, NULL),
 'First grandchild')

INSERT INTO #temp
 (orgHier, NodeName)
VALUES (@Root.GetDescendant(@curNode, NULL),
 'Second child')

SELECT orgHier, orgHier.ToString(),
 NodeName
 FROM #temp

DROP TABLE #temp

You’ll find a good tutorial on the HierarchyID
type, including a discussion of the methods, at
http://tinyurl.com/n6kk6jm.

What about VFP?
Obviously, VFP has no analogue of the HierarchyID
data type. However, you can create your own.
 Marcia Akins describes an approach to doing so
in her paper "Modeling Hierachies," available at
http://tightlinecomputers.com/Downloads.htm;
scroll down near the bottom of the page.

Of course, a home-grown version won’t include
the methods that SQL Server’s HierarchyID type
comes with. You’ll have to write your own code to
handle look-ups and insertions.

Summing up
While most hierarchies we encounter in modeling
data involve different entities at each level, there
are many that are self-referential. While you can
work with such hierarchies in Visual FoxPro, SQL
Server offers a much stronger set of tools for this
kind of data.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of dozen books including the
award winning Hacker’s Guide to Visual FoxPro, Microsoft
Office Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer, available at
www.foxrockx.com. Her other books are available from
Hentzenwerke Publishing (www.hentzenwerke.com). Tamar
was a Microsoft Support Most Valuable Professional from
the program's inception in 1993 until 2011. She is one of
the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

